Publications

Scholar

Preprints

  1. Fanuel, M., & Bardenet, R. (2024). On the Number of Steps of CyclePopping in Weakly Inconsistent U(1)-Connection Graphs.
  2. Fanuel, M., Aspeel, A., Schaub, M. T., & Delvenne, J.-C. (2024). Ellipsoidal embeddings of graphs.
  3. Fanuel, M., & Bardenet, R. (2022). Sparsification of the regularized magnetic Laplacian thanks to multi-type spanning forests.

Journal articles

  1. Bardenet, R., Fanuel, M., & Feller, A. (2024). On sampling determinantal and Pfaffian point processes on a quantum computer. Journal of Physics A: Mathematical and Theoretical, 57(5), 055202.
  2. Fanuel, M., Schreurs, J., & Suykens, J. A. K. (2022). Determinantal Point Processes Implicitly Regularize Semi-parametric Regression Problems. SIAM Journal on Mathematics of Data Science, 4(3), 1171–1190.
  3. Fanuel, M., & Tyagi, H. (2022). Denoising modulo samples: k-NN regression and tightness of SDP relaxation. Information and Inference: A Journal of the IMA, 11(2), 637–677.
  4. Pandey, A., Fanuel, M., Schreurs, J., & Suykens, J. A. K. (2022). Disentangled Representation Learning and Generation with Manifold Optimization. Neural Computation, 34(10), 2009–2036.
  5. Fanuel, M., Aspeel, A., Delvenne, J.-C., & Suykens, J. A. K. (2022). Positive semi-definite embedding for dimensionality reduction and out-of-sample extension. SIAM Journal on Mathematics of Data Science, 4(1), 153–178.
  6. Fanuel, M., Schreurs, J., & Suykens, J. A. K. (2022). Nystroem landmark sampling and regularized Christoffel functions. Machine Learning, 111, 2213–2254.
  7. Fanuel, M., Schreurs, J., & Suykens, J. A. K. (2021). Diversity sampling is an implicit regularization for kernel methods. SIAM Journal on Mathematics of Data Science, 3(1), 280–297.
  8. Alaiz, C. M., Fanuel, M., & Suykens, J. A. K. (2019). Robust Classification of Graph-Based Data. Data Mining and Knowledge Discovery, 33, 230–251.
  9. Fanuel, M., & Suykens, J. A. K. (2019). Deformed Laplacians and spectral ranking in directed networks. Applied and Computational Harmonic Analysis, 47(2), 397–422.
  10. Alaiz, C. M., Fanuel, M., & Suykens, J. A. K. (2018). Convex Formulation for Kernel PCA and its Use in Semi-Supervised Learning. IEEE Transactions on Neural Networks and Learning Systems, 29(8), 3863–3869.
  11. Fanuel, M., Alaiz, C. M., Fernandez, A., & Suykens, J. A. K. (2018). Magnetic eigenmaps for the visualization of directed networks. Applied and Computational Harmonic Analysis, 44(1), 189–199.
  12. Fanuel, M., Alaiz, C. M., & Suykens, J. A. K. (2017). Magnetic eigenmaps for community detection in directed networks. Phys. Rev. E, 95, 022302.
  13. Fanuel, M., & Govaerts, J. (2014). Non-Perturbative Dynamics, Pair Condensation, Confinement and Dynamical Masses in Massless QED2+1. J. Phys. A: Math. Theor., 47, 405401.
  14. Fanuel, M., Govaerts, J., Avossevou, G. Y. H., & Dossa, A. F. (2014). The N = 1 Supersymmetric Wong Equations and the Non-Abelian Landau Problem. J. Phys. A: Math. Theor., 47, 465401.
  15. Fanuel, M., & Zonetti, S. (2013). Affine Quantization and the Initial Cosmological Singularity. EPL, 10001.
  16. Fanuel, M., & Govaerts, J. (2012). Dressed Fermions, Modular Transformations and Bosonization in the Compactified Schwinger Model. J. Phys. A: Math. Theor., 45, 035401.

Conference papers

  1. Jaquard, H., Fanuel, M., Amblard, P.-O., Bardenet, R., Barthelmé, S., & Tremblay, N. (2023). Smoothing complex-valued signals on Graphs with Monte-Carlo. To Appear at International Conference on Acoustics, Speech and Signal Processing (ICASSP).
  2. Fanuel, M., & Tyagi, H. (2021). Recovering Hölder smooth functions from noisy modulo samples. 55th Asilomar Conference on Signals, Systems, and Computers, 857–861.
  3. Fanuel, M., & Bardenet, R. (2021). Nonparametric estimation of continuous DPPs with kernel methods. Advances in Neural Information Processing Systems 34 Proceedings (NeurIPS 2021) .
  4. Schreurs, J., De Meulemeester, H., Fanuel, M., De Moor, B., & Suykens, J. A. K. (2021). Leverage Score Sampling for Complete Mode Coverage in Generative Adversarial Networks. The International Conference on Machine Learning, Optimization, and Data Science (LOD 2021).
  5. De Meulemeester, H., Schreurs, J., Fanuel, M., De Moor, B., & Suykens, J. A. K. (2020). The Bures Metric for Taming Mode Collapse in Generative Adversarial Networks. The European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD 2021).
  6. De Plaen, H., Fanuel, M., & Suykens, J. A. K. (2020). Wasserstein exponential kernels. International Joint Conference on Neural Networks (IJCNN 2020), 1–6.
  7. Schreurs, J., Fanuel, M., & Suykens, J. A. K. (2019). Towards deterministic diverse subset sampling. Artificial Intelligence and Machine Learning (Proc. of the 28th Belgian Dutch Conference on Machine Learning), 137–151.

Workshop papers

  1. Schreurs, J., Fanuel, M., & Suykens, J. A. K. (2020). Ensemble Kernel Methods, Implicit Regularization and Determinantal Point Processes. In ICML 2020 workshop on Negative Dependence and Submodularity, PMLR 119.

Thesis

  1. Fanuel, M. (2014). Non-perturbative Quantum Electrodynamics in low dimensions [Université catholique de Louvain].