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What is a DPP ?

A DPP is a point process gen-
erating random repulsive point
patterns. We learn the DPP
from s point patterns C1, . . . , Cs.
Here, consider only one point
pattern C (dots) and its inten-
sity estimate (color). See →

Correlation functions and correlation kernel

Intuitively, the correlation function at x1, . . . , x` is

%`(x1, . . . , x`)︸ ︷︷ ︸
correlation function

≈ Pr(one point in each B(xi, δ), i = 1, . . . `)

vol(B(x1, δ)) . . . vol(B(x`, δ))
.

We learn the correlation kernel of the DPP k(x, x′)

For a DPP, order-` correlation function (or joint intensity)

%`(x1, . . . , xm) = det[k(xi, xj)]i,j for all ` ≥ 1.

Learning the integral kernel of operator

•Let X a compact set of Rd. Integral kernels of (integral) operator

Kf (x) =

∫
X

k(x, y)︸ ︷︷ ︸
correlation kernel

f (y)dµ(y), with µ = unif(X ).

•Hypothesis: K : L2(X )→ L2(X ) trace class symmetric.

DPP exists iff the eigenvalues of K are in [0, 1]

Special case K = A(A + I)−1 with the likelihood operator

Af (x) =

∫
X

a(x, y)f (y)dµ(y).

The full Maximum Likelihood Estimation problem (MLE)

max
A∈S+(L2(X ))

log det [a(xi, xj)]i,j∈C − log det(I + A),

where S+(H): psd trace class operators on Hilbert space H .

Kernelization and discretization

•Let (H, 〈·, ·〉) RKHS on X with bounded continuous k(x, y).

•Feature map: φ(x) = k(x, ·) ∈ H.
•Restriction operator S : H → L2(X ) as (Sg)(x) = g(x).

Define A : L2(X )→ L2(X ) as A = SAS∗ with A ∈ S+(H).

Kernelized Maximum likelihood estimation (kMLE)

min
A∈S+(H)

f (A) = − log det [〈φ(xi), Aφ(xj)〉]i,j∈C + log det(I + SAS∗).

•Discretization: Sample I = {x′1, . . . , x′n} i.i.d. ∼ unif(X ).

Sn : H → Rn such that Sng =
1√
n

[g(x′1), . . . , g(x′n)]
>.

Approximation of Fredholm determinant

With high probability,∣∣∣ log det (In + SnAS
∗
n)︸ ︷︷ ︸

matrix

− log det (I + SAS∗)︸ ︷︷ ︸
operator

∣∣∣ . Tr(A)/
√
n.

Discretized kernelized MLE + regularization

Define the sample version of negative log-likelihood f (A) as

fn(A) = − log det [〈φ(xi), Aφ(xj)〉]i,j∈C + log det(In + SnAS
∗
n).

Solve problem with discrete and penalized objective

min
A∈S+(H)

fn(A) + λTr(A)︸ ︷︷ ︸
penalization

, with λ > 0.

Define Z = {x1, . . . , x|C|, x
′
1, . . . , x

′
n} and denote m = |Z|.

Representer theorem Marteau-Ferey, Bach, Rudi [1]

∃ partial isometry V : H → Rm such that A = V ∗BV .

Finite optimization problem

MLE reduces to finite non-convex problem (λ-kMLE):

min
B�0

fn(V
∗BV ) + λTr(B),

where fn(V
∗BV ) = − log det

[
Φ>BΦ

]
CC + log det

[
|I|I + Φ>BΦ

]
II.

Statistical guarantee: approximate full MLE objective

Let A? be a solution of (kMLE) . Let B? be a solution of (λ-kMLE).
Let δ ∈ (0, 1/2). If λ ≥ 2cn(δ), w.p. at least 1− 2δ, it holds

|f (A?)− f (V ∗B?V )| ≤ 3λTr(A?)with cn . 1/
√
n.

See [2] for the proof techniques.

•Numerical solution: regularized Picard iteration with monotone
objective values; see [3] for proof techniques.

Estimation of k(x, y), i.e., kernel of K = A(A + I)−1.

Let δ ∈ (0, 1) and ε ∈ (0, 1). Let K be the correlation kernel asso-
ciated to A = SAS∗. We can compute K̂(p) by using p points i.i.d.

∼ unif(X ), s.t. if p & ‖A‖op
ε2 log

(
4 Tr(K)
δ‖K‖op

)
, then, w.p. at least 1− δ, we

have 1
1+εK � K̂(p) � 1

1−εK.

Correlation kernel estimation: Gram matrix on a grid in [0, 1]2.

(a) [k̂(x, x′)]x,x′∈grid

estimated Gram
(b) [k(x, x′)]x,x′∈grid

exact Gram
(c) [k̂((x0, x)]x∈grid

Slice estim. Gram
(d) [k(x0, x)]x∈grid

Slice exact Gram

Ground truth k(x, y) = 100 exp(−‖x− y‖2
2/0.052) (s = 10 point patterns).
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