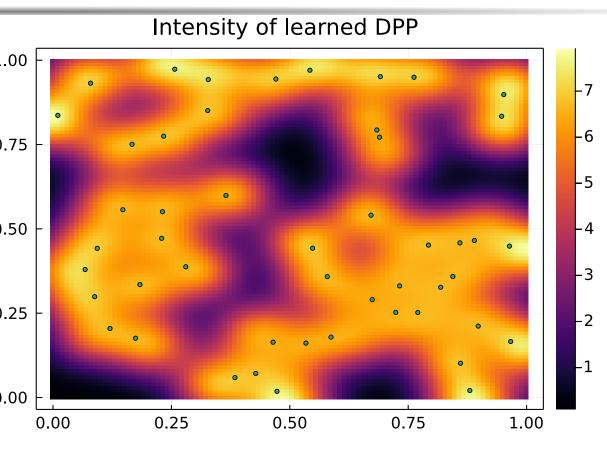


### What is a DPP ?

A DPP is a point process generating random repulsive point patterns. We learn the DPP <sup>0.75</sup> from s point patterns  $\mathcal{C}_1, \ldots, \mathcal{C}_s$ . 0.50 Here, consider only one point  $_{0.25}$ pattern  $\mathcal{C}$  (dots) and its intensity estimate (color). See  $\rightarrow$ 



Correlation functions and correlation kernel

Intuitively, the correlation function at  $x_1, \ldots, x_\ell$  is  $\underbrace{\varrho_{\ell}(x_1,\ldots,x_{\ell})}_{\text{vol}(B(x_1,\delta))} \approx \frac{\Pr(\text{one point in each } B(x_i,\delta), i=1,\ldots\ell)}{\operatorname{vol}(B(x_1,\delta))\ldots\operatorname{vol}(B(x_{\ell},\delta))}.$ correlation function

### We learn the correlation kernel of the DPP k(x, x')

For a DPP, order- $\ell$  correlation function (or joint intensity)  $\varrho_{\ell}(x_1,\ldots,x_m) = \det[\mathbf{k}(x_i,x_j)]_{i,j}$  for all  $\ell \geq 1$ .

# Learning the integral kernel of operator

• Let 
$$\mathcal{X}$$
 a compact set of  $\mathbb{R}^d$ . Integral kernels of (integral  $\mathsf{K}f(x) = \int \mathsf{K}(x, y) f(y) \mathrm{d}\mu(y)$ , with  $\mu = \int \mathsf{K}(x, y) f(y) \mathrm{d}\mu(y)$ .

$$\mathsf{K}f(x) = \int_{\mathcal{X}} \underbrace{\mathsf{k}(x, y)}_{\text{correlation kernel}} f(y) \mathrm{d}\mu(y), \text{ with } \mu =$$

• Hypothesis:  $\mathsf{K} : L^2(\mathcal{X}) \to L^2(\mathcal{X})$  trace class symmetric.

DPP exists iff the eigenvalues of K are in [0, 1]Special case  $\mathbf{K} = \mathbf{A}(\mathbf{A} + \mathbb{I})^{-1}$  with the *likelihood* operator  $\mathsf{A}f(x) = \int_{\mathcal{V}} \mathsf{a}(x, y) f(y) \mathrm{d}\mu(y).$ 

The full Maximum Likelihood Estimation problem (MLE)  $\max_{\mathsf{A}\in\mathcal{S}_{+}(L^{2}(\mathcal{X}))}\log\det\left[\mathsf{a}(x_{i},x_{j})\right]_{i,j\in\mathcal{C}}-\log\det(\mathbb{I}+\mathsf{A}),$ 

where  $\mathcal{S}_+(H)$ : psd trace class operators on Hilbert space H.

# Nonparametric estimation of continuous DPPs with kernel methods

Michaël Fanuel\*, Rémi Bardenet\*

\*Univ. Lille, CNRS, Centrale Lille, UMR 9189 - CRIStAL, 59000 Lille

### Kernelization and discretization

- Let  $(\mathcal{H}, \langle \cdot, \cdot \rangle)$  RKHS on  $\mathcal{X}$  with bounded continuous k(x, y).
- Feature map:  $\phi(x) = k(x, \cdot) \in \mathcal{H}$ .
- Restriction operator  $S : \mathcal{H} \to L^2(\mathcal{X})$  as (Sg)(x) = g(x). Define  $\mathsf{A}: L^2(\mathcal{X}) \to L^2(\mathcal{X})$  as  $\mathsf{A} = SAS^*$  with  $A \in \mathcal{S}_+(\mathcal{H})$ . Kernelized Maximum likelihood estimation (kMLE)  $\min_{A \in \mathcal{S}_{+}(\mathcal{H})} f(A) = -\log \det \left[ \langle \phi(x_i), A \phi(x_j) \rangle \right]_{i,j \in \mathcal{C}} + \log \det(\mathbb{I} + SAS^*).$

• **Discretization**: Sample  $\mathcal{I} = \{x'_1, \ldots, x'_n\}$  $S_n: \mathcal{H} \to \mathbb{R}^n$  such that  $S_n g = \frac{1}{\sqrt{n}} [g]$ 

# Approximation of Fredholm determinant

With high probability,  $\log \det \left( \mathbf{I}_n + S_n A S_n^* \right) - \log \det \left( \mathbb{I} + S_n A S_n^* \right)$ operator

# Discretized kernelized MLE + regularization

Define the sample version of negative log-likelihood f(A) as  $f_n(\mathbf{A}) = -\log \det \left[ \langle \phi(x_i), \mathbf{A}\phi(x_j) \rangle \right]_{i,j \in \mathcal{C}} + \log \det(\mathbf{I}_n + S_n \mathbf{A} S_n^*).$ Solve problem with discrete and **penalized** objective  $\min_{A \in \mathcal{S}_{+}(\mathcal{H})} f_{n}(A) + \underbrace{\lambda \operatorname{Tr}(A)}_{\text{penalization}}, \text{ with } \lambda > 0.$ Define  $\mathcal{Z} = \{x_1, \ldots, x_{|\mathcal{C}|}, x'_1, \ldots, x'_n\}$  and denote  $m = |\mathcal{Z}|$ .

# Representer theorem Marteau-Ferey, Bach, Rudi [1]

 $\exists$  partial isometry  $V : \mathcal{H} \to \mathbb{R}^m$  such that  $A = V^* \mathbf{B} V$ .

l) operator

 $\operatorname{unif}(\mathcal{X}).$ 

# Finite optimization problem

$$\{ x'_n \}$$
 i.i.d.  $\sim \operatorname{unif}(\mathcal{X}).$   
 $[g(x'_1), \ldots, g(x'_n)]^\top.$ 

$$\left| \sum_{\text{ator}} \left| \sum_{n} \operatorname{Tr}(A) / \sqrt{n} \right| \right|$$

- MLE reduces to *finite* non-convex problem ( $\lambda$ -kMLE):

See [2] for the proof techniques.

objective values; see [3] for proof techniques.

have  $\frac{1}{1+\epsilon} \mathbf{K} \preceq \hat{\mathbf{K}}(p) \preceq \frac{1}{1-\epsilon} \mathbf{K}$ .

(a)  $[\mathbf{k}(x, x')]_{x, x' \in \text{grid}}$ estimated Gram

(b)  $[k(x, x')]_{x, x' \in \text{grid}}$ exact Gram

- [1] Marteau-Ferey, Bach, and Rudi, NeurIPS 2020.
- [2] Rudi, Marteau-Ferey, and Bach, arXiv:2012.11978
- [3] Mariet and Sra, ICML 2015

We acknowledge support from ERC grant Blackjack (ERC-2019-STG-851866) and ANR AI chair Conference on Neural Information Processing Systems (2021) Baccarat (ANR-20-CHIA-0002).



 $\min_{\mathbf{B} \succ 0} f_n(V^* \mathbf{B} V) + \lambda \operatorname{Tr}(\mathbf{B}),$ 

where  $f_n(V^*\mathbf{B}V) = -\log \det \left[ \mathbf{\Phi}^\top \mathbf{B} \mathbf{\Phi} \right]_{\mathcal{CC}} + \log \det \left[ |\mathcal{I}| \mathbf{I} + \mathbf{\Phi}^\top \mathbf{B} \mathbf{\Phi} \right]_{\mathcal{TT}}$ .

#### Statistical guarantee: approximate full MLE objective

Let  $A_{\star}$  be a solution of (kMLE). Let  $\mathbf{B}_{\star}$  be a solution of ( $\lambda$ -kMLE). Let  $\delta \in (0, 1/2)$ . If  $\lambda \geq 2c_n(\delta)$ , w.p. at least  $1 - 2\delta$ , it holds  $|f(\mathbf{A}_{\star}) - f(V^* \mathbf{B}_{\star} V)| \leq 3\lambda \operatorname{Tr}(\mathbf{A}_{\star})$  with  $c_n \leq 1/\sqrt{n}$ .

• Numerical solution: regularized Picard iteration with monotone

# Estimation of $\mathbf{k}(x, y)$ , i.e., kernel of $\mathbf{K} = \mathbf{A}(\mathbf{A} + \mathbb{I})^{-1}$ .

Let  $\delta \in (0,1)$  and  $\epsilon \in (0,1)$ . Let K be the correlation kernel associated to  $A = SAS^*$ . We can compute  $\hat{K}(p)$  by using p points i.i.d.  $\sim \operatorname{unif}(\mathcal{X})$ , s.t. if  $p \gtrsim \frac{\|A\|_{op}}{\epsilon^2} \log\left(\frac{4\operatorname{Tr}(\mathsf{K})}{\delta\|\mathsf{K}\|_{op}}\right)$ , then, w.p. at least  $1 - \delta$ , we

